Beyond saliency: Understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

Despite the tremendous achievements of deep convolutional neural networks (CNNs) in most of computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step visualization method that aims to shed light on how deep CNNs recognize images and the objects therein. We start out with a layer-wise relevance propagation (LRP) step w...

متن کامل

Beyond Universal Saliency: Personalized Saliency Prediction with Multi-task CNN

Saliency detection is a long standing problem in computer vision. Tremendous efforts have been focused on exploring a universal saliency model across users despite their differences in gender, race, age, etc. Yet recent psychology studies suggest that saliency is highly specific than universal: individuals exhibit heterogeneous gaze patterns when viewing an identical scene containing multiple s...

متن کامل

Saliency Detection with Recurrent Fully Convolutional Networks

• Employs three kind of low-level contrast features, including color, intensity and orientation, and the center prior knowledge to introduce saliency prior maps. • Train the RFCN with two stage training strategy, pre-training on the segmentation data set and fine-tuning on the saliency data set. The recurrent structure can incorporate the saliency prior maps into the CNNs with an end-to-end tra...

متن کامل

Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction

Computational saliency models for still images have gained significant popularity in recent years. Saliency prediction from videos, on the other hand, has received relatively little interest from the community. Motivated by this, in this work, we study the use of deep learning for dynamic saliency prediction and propose the so-called spatio-temporal saliency networks. The key to our models is t...

متن کامل

Saccade Sequence Prediction: Beyond Static Saliency Maps

Visual attention is a field with a considerable history, with eye movement control and prediction forming an important subfield. Fixation modeling in the past decades has been largely dominated computationally by a number of highly influential bottom-up saliency models, such as the Itti-Koch-Niebur model. The accuracy of such models has dramatically increased recently due to deep learning. Howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Image and Vision Computing

سال: 2019

ISSN: 0262-8856

DOI: 10.1016/j.imavis.2019.02.005